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Analysis and observer design in synchronization via a state feedback control method
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On the basis of a Lure-type system, a systematic procedure of state feedback control was developed to
analyze the synchronization of two chaotic systems. To ensure a stable synchronized result, the conditions of
stability are investigated. Moreover, with the aid of a deterministic observer, the unmeasured states are recon-
structed and the time of synchronization can be arbitrarily designed with a guaranteed stability. Meanwhile, if
the system’s output is corrupted by the measurement noise, then a stochastic qleséeneied Kalman filter
is proposed to reject the noid&1063-651X97)06711-1

PACS numbe(s): 05.45+b

I. INTRODUCTION It dealt with the conditional Lyapunov exponent calculated
from a linearized result of the variational equation. Due to
Synchronization between two identic@r nearly identi- the requirements of previous computer analyses, the SFC
cal) chaotic systems recently has received a great deal dgnethod suffers in problems of coupled gain selection
interest in light of its potential applicatiori4,2]. In particu-  perturbation weight the number of measuremerftsr per-
lar, the use of chaotic synchronization in communicationturbationg, and the initial error between two chaotic sys-
fields has been investigated by many workers; see [@g., tems. Until now, most recent papers applying this method
7]. Because of the broadband character of the chaotic signadtill handled those problems with a trial and error gain selec-
it is especially availing in secure signal transmisgiga10.  tion, ambiguous initial error, and numerous computer simu-
There are various strategies that have been applied to carl§tions[13—15. In fact, the above items affect each other
out the Synchronization_ Some main approaches of thos@utua”y and need an efficient SyStematiC analySiS Inltla”y
strategies had also been verified by experiments such as Due to the state feedback coupling of the SFC method,
Pecora and Carroll's methofil], the Ott-Grebogi-York theoretically, it is always possible to have a stable synchro-
(OGY) [11]-based methofL2], and the state feedback con- nization result through a coupled gain and coupled state
trol (SFO method[13—15. In the method of Pecora and (Mmeasurementadjustment. Briefly, in the error equation of
Carroll, a system is divided into a drive subsystémhose the SFC method, the eigenvalues of the linear part can be
largest Lyapunov exponent is positivand a driven sub- designeda selective synchronization timewhich is an ap-
system(whose Lyapunov exponents are all negativehus ~ Parent distinction from other methods. In this paper we pro-
the trajectories from two identical driven subsystems can b¥ide a methodical procedure to analyze the SFC method and
Synchronized if the same driven System is used_ Neverthélondense |t W|th a Criterion of SynChronization Stablllty Fur-
less, due to the divided requirements of the system, thi§rermore, under noisy or only output available circum-
method is not always applicable. Subsequently, methods th&tances, we built an observer to estimate the unmeasured
do not require division were employed. First, a method basegtates and to reject the noise. Thereafter, the stability of syn-
on the OGY idea was used, which requires continual monichronization still can be accomplished.
toring of the system’s states and deals with the Poincare The outline of the remainder of this paper is as follows. In
map. Thereafter' the SFC method was app“ed based on t@c Il we bneﬂy discuss the method of the SFC based on the
idea of Pyragafl16,17. In practical applications, due to self- concept of Lure’s system. In essence, this point of view is to
regulation of state feedback, the method of SFC does ndteparate a nonlinear physical system into a linear dynamical
need a real-time computer analysis and is particularly favorsystem and a nonlinear element. Therefore, the whole system
able for experimentation. can be represented as a feedback connection that is easily
The stability of synchronization is also an important sub-analyzed by a linear theory. An observer design is also in-
ject attracting many researchers. In the case of Pecora aﬁ@duced in this section to assist the Stabl“ty of SynChroniza-
Carroll's method, a systematic analysis procedure was founHon. In Sec. lll two typical examples are used to demonstrate
in [18] and then a necessary and sufficient condition basethe proposed design procedures. Finally, in Sec. IV we sum-
on the asymptotic stability was presente®]. In applica- Mmarize the results of this paper.
tions, an appropriate Lyapunov function is needed for the
subsystem and the stability of synchronization needs to be ll. STATE FEEDBACK CONTROL METHOD
investigated in a case by case study. If a suitable Lyapunov A. Output feedback coupling
function is not found, this method for synchronization then . . . .
fails. In the case of the OGY-based method, by reason of a Suppose that _there are wo identi¢al nearly identical
restricted applicatiorfapplied only to the systems described chaotic systems in the form of
by two-dimensional maps on a Poincawaface, the discus-
sion of the stability of the method is limited. In the case of
the SFC method, the stability was discussed by Pyreds  where F:R"XRP—R" is a vector field of the systenx,y

x=F(x,u), y=F(y,u), (1)
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let us define the synchronization error vector Yo x—;
X (°“‘P“‘; then the error dynamics obeys

u (input) % “Fxu)

y=Ay+f(x)—f(y)—BKC(x—y)

1l =AY+ Y+ —f(y), @)
i=Ax+Bu+f(x) , x'=Cx

nonlinear element

whereAy=A—BKC. In Eq. (4) the synchronization of two

systems has been condensed to a quasilinear system with the

linear partA, and nonlinear parf(y+y)—f(y). Hence the

X' (output) effects of the initial error between two chaotic systems can

— > be easily understood by the nonlinear part of this equation.
Moreover, the effects of the coupled gdinand number of
measurements can be realized by the Huri&, the eigen-
values are in the open left-half plgneotion of the matrix

| :Integrator Aq. Subsequently, in order to have a convergent result in Eq.
(4), the Lyapunov function is used to guarantee the synchro-

FIG. 1. Nonlinear system represented by a feedback connectionization stability. First we assume that the nonlinear function
of a linear system and a nonlinear element. f(') is confined by a local Lipschitz condition, i.e.,

u (input)

eR" are the system states, ane RP is the control input. If0=fWl=1f(y+y) = f(yll<Lyl, (5
We assumed that the systgih) has a ‘Lure-type systei
[21] form, i.e., a linear time-invariaritonstant system with

a feedback connection of nonlinear element as shown in Fi
1. On the basis of this point of view, we separateear-
range system(1) as into the linear and nonlinear parts

wherel is a local Lipschitz constant. In an increasing non-

linear element, the greater the initial error, the larger the

g];ipschitz constanL (as shown in Sec. ]l Actually, this

constant can be interpreted as the maximum gradient in the

region of interest. Then, iAy is Hurwitz, given a positive-

x=Ax+Bu+f(x), x =Cx definite matrixQ, there is a constant, symmetric, positive-
(2 definite matrixP such that the Lyapunov equation is

y=Ay+Bu+f(y), y'=Cy, PAy+AIP=—Q. (6)

(time invarian}, Be R"*P is the control matrixx’,y’ € R™  the derivative oV/() along the trajectories of the error sys-
are the measurements with an output ma@ix R™", and  tem satisfies

f(x) is the nonlinear element. It should be noted that the

matrix A is not a linearized resulfi.e., Jacobian lineariza- \7(37): —y'Qy+2y"PL|[Y|,
tion) of F nor is the nonlinear elemerf{x) a higher-order ) 0
term of F in an expansion around a fixed point. A schematic < Nmin(Q)IVI2+ 2\ max PL V2 (7

diagram of Eq(2) is shown in Fig. 2. The process of repre- ) ) )
senting a nonlinear system in Lure form depends on the par'[he synchronized error converges asymptotically to zero if
ticular system involved. If the states of the systémcannot

: ; ) <Api
be separated, we simply s&tto be a zero matrix. Otherwise, L= Nemin Q)2\ max{ P). ®)

if the control term of the systeifl) is not separable, then the \yhere) are the eigenvalues of matr@ or P. Without a loss
system fails to have a Lure form. Basically, it is not hard 04t precesion we se@=1 and thus the ratio in E¢8) has a

find a linear time-invariant part of matrik, whereas there  mayimum valuefurther details can be found [21]). There-
may be some difficulty in separating the term of controlfyre we have the inequality

force u. Fortunately, in many physical cases including cha-

otic ones(e.g., the Lorenz system and the Duffing systein 2N ma P)L<1. 9

is not difficult to represent the system in the feedback form

of Fig. 1. Hence, in Eq(2) let thex system be driveslave ~ Since the feedback coupling teBKC produces a Hurwitz

to synchronize the system(maste). Two chaotic systems Ay, the rules in the linear system can be applied directly in
are coupled by the difference of the output vector and thé=d. (4). If the matrixC is a fully state measurement and the

matrix of coupled gain as pair (A,B) is controllable[22] (i.e., through the matriB the
actuator can excite the system states to any points in the
x=Ax+Bu+f(x)—BK(x'—y"), (33 phase spagethen the eigenvalues &, can be assigned
arbitrarily, i.e., A\na{P) can be chosen. Consequently, the
y=Ay+Bu+f(y), (3b)  synchronization between the chaotic systems can be accom-

plished under any initial errors. Here the synchronization
whereK e RP*™M js the matrix of the feedback coupled gain. problems have been interpreted as a pole placement of the
Note that in Eq.3a) the coupled ternBK (y’ —x’) without linear part in the quasilinear equatit$). Once the choice of
the control vectorB actually acts as a software observerthe eigenvalues ol (i.e., the choice of the maximum ei-
known in engineering fieldé&a Thau observer20]). Further, genvalue ofP) holds the inequality9), the synchronization
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6= (A—KC)e+f(x+e)—f(x),

(12
e=(A-K,C)g,+f(y+e)—f(y).
- - - > C |I e Thereafter, the error dynamics of synchronizatioy=k
—y) is
Chaotic sys. X . - ~
Ekif y=(A=BK)y+f(y+y)—f(y)-BK(e—g). (13
With a time-scale decompositid1], let us first switch on
the observer and then the synchronization command. Conse-
quently, the converged time both in the observer and in syn-
=/ c| y chronization can be designed under an appropriate gain se-
= lection. Note that the feedback gains in observe(s,K,)
are software and in synchronizatii) hardware.
Chaotic sys. y

2. Stochastic case (with noise)

FIG. 2. Synchronization of two chaotic systems interpreted in  The observer results in the above deterministic case can
the “Lure-type system” form. be easily extended with a similar procedure to a stochastic
) o ) case. Taking into account the measurement n¢isppose
converges asymptotically to zero within the region of localiat there is no input disturbangds Egs. (2) and (3), the

Lipschitz a\_/ailability. To this end, the influence fact_or_; problems of synchronization between two systemithout
(coupled gain selection, number of measurements, and '”'“%bserve} are reformulated as

error of two systemshave been systematically connected
toglether and can be summarized as follows. _ _ = Ax+BU+f(X)—BK(X'—y'), x'=Cx+V,
n order to cover any initial errors, an appropriate maxi- (14)
mum eigenvalue oP is neededthe suitable eigenvalues of _
Ao), i.e., the matrixC must be a full state measurement and y=Ay+Bu+f(y), y' =Cy+v,,
the pair(A,B) must be controllable. If this is not the case, we
are aware that the initial error may not be given arbitrarilywherev is the vector of the measurement noise. Here we
and the stability of synchronization is studied with a case-assume that all noise is an uncorrelated Gaussian distribution

by-case applicability. with zero mean and fixed covariance as describedvpy
~N(O,R,) and vy~N(0,Ry). Hence let us design an ex-
B. Observer feedback coupling tended Kalman filteEKF) [23] to substitute the determin-

istic observers in Eq$10b) and(11b) and to reject the noise

as shown in Fig. 4. Evidently, the design procedures of the
In the case in which the system’s states are not fully acsynchronization are similar to Eqél0a), (10b), (11a, and

cessible, we propose a nonlinear obserfgsterministi¢ to  (11b), but different in the observer gairkK(,K,) selection.

estimate those states. With the same systems and output asAacordingly, the error dynamics of the synchronization is the

Eg. (2), the observer is designed for each chaotic system tsame as in Eq(13), while the estimated error dynamics of

reconstruct the embedded states as shown in Fig. 3. In prathe EKF are slightly different from Eq12) as

ticality, the observers are implemented by computer soft-

ware. If the pair(A,C) is observabld22] (i.e., through the g=(A—K,C)e+ f(x+e)—f(X)— KV, (15)

matrix C the measurement can read out all states in the sys-

tem), the observer is asymptotically converged. The math- =
ematical formulation is §=(A—K,C)ey+fly+e)—fly)—Kyvy.

1. Deterministic case (without noise)

x=Ax+Bu+ f(x)— BK(X—Y), (109  Surely, in Eq.(15), based on the criterion of the EKF, a
minimum variance result is obtained. According to lineariza-
PO A SN - tion about the current estimated states, the EKF’s gain must
X=AX+Bu+f(X) —BK(X=Yy) —K(CX=x'), (10D pe computed in real time as

y=Ay+Buti(y), (113 P,=(A+Df,)P,+P,(A+Df ) T—P,C'R; 1CP,,

. . ) (163

y=Ay+Bu+f(y)—K,(Cy—y'), (11b)
— Tp—1

wherex,y e R" are the observer's states aKg ,K,e R™™ K=PC R (160

are the gain of each observer. If defining the observer's error

ase=X—x ande,=y—y, the error dynamics in Eq$10) P,=(A+Df,)P,+P,(A+Df,)"-P,C'R, 'CP,,

and (11) then obeys (17a
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lll. EXAMPLES

&
Observer X

A. Example 1

The synchronization of two Lorenz systefi$] is stud-
ied in this example. On the basis of H®), the systems in
the Lure form are described as

o )-(1 -p p 0 X1 0
N P A
i ¢ YeCy . X - X X1X
= | e T
Chaotic sys. \
5'=Ay+t-Buif (;) Y 3_/1 —P P 0 Y1 0
y'=Cy Y2 =| r -1 0 Yo —YiYs
Y3 0 0 —b/ \y; yiYo

To synchronize, the systems are coupled in the form of Eg.
(3) and are given by

X1 -p p 0 X1 0
)'(2 = r -1 0 Xo | +| —X1X3
X3 0 0 -—b/\xs X1X5

—BKC(x—y),

FIG. 3. Synchronization of two chaotic systems aids by two
deterministic observers.

(20)
K,=P,C'R, !, 17b :
oy y (17h Y1 -p P 0 Y1 0

Ya|=| T -1 0 Yo |+ | —VY1Ys

where Y3 0 0 —b/\ys Y1Y2
af (%) af (y) The parameters are chosen @s 10, r=28, andb=8/3;

= , y=" . (18  thereupon both systems are chaotic.
X |yg %y y=y Step 1 To simplify the problem and coupled gain selec-

tion, in this first example let all the states be measured and
three control inputs be considered, i.e., two identity matrices
B=CeR3%*3, Therefore, the coupled gaik will be a
3X 3 matrix and the eigenvalues oA(-BKC) can be as-
signed arbitrarily. Note that, in the case of the Lorenz sys-
tem, the three control inputs can easily be fulfilled by a cir-

Clearly, Eq.(18) is a first-order approximation. A high-order
expansion can be easily derived, but with more time con;
sumption. Here the matriceé ,P, are an approximation of
the true covariance matrix aﬂdx ,Ky are calculated based

on the rule of minimum variance. An EKF in engineering
fields is not always stable and we have to allow for a smaIFu't (see, e.9.[3,24]) and with two control inputs, the pair
(A,B) is controllable.

error in the initial estimation. Once the filters converge, the Step 2 B & (V) = (0 — T the local Li
design procedures of synchronization are the same as the fulkt €p tec‘?gs (y)l_(t d gly?"ylyZ) » (N€ local Lips-
state measurement procedure shown in @By.To this end, Itz constant. 1s evaluated by

0 0

Step 1 In order to cover any initial errors, a changeable ya 0 -y

maximum eigenvalue d? is neededi.e., the eigenvalues of y, y1 O
Ao can be assignedwhich also means that the paii&,B)
servable constrajnlf this is not the case, we are aware thatLet the initial error of the Lorenz systems be arbitrary.
the initial error may not be given arbitrarily and the synchro-Roughly, in the state space we have
nization is stabilized case by case.

the synchronization with the observer can be summarized as
follows. ‘

and(A,C) are controllable and observable, respectivighe =max0,|ys| +|yil.ly2l+lyi)=L. (2
requirement of a full measurement is substituted by an ob-

Step 2 From Eq.(5) the local Lipschitz constarit is ly1|=<60, |y,|<60, |ys/=<60. (22
evaluated according to the nonlinear function and the initial
error within two systems. Substituting Eq(22) into Eq (21) and taking the worse case

Step 3 If the systems are not full state measurementf the initial error, i.e.y;=Yy,=Yy3;=120, we have. = 240.
and the pair(A,C) is observable, then design the observers Step 3 There is no need for an observer.
(deterministic or stochasiidor the systems with feedback Step 4 Select the coupled gain to beK
gainK, andK, . =(300,0,0; 0,300,0; 0,0,300) with an identity matrixC,

Step 4 Selected the synchronization coupled gdiand  and the eigenvalues &%, —322.8, —288.2, and—302.7,
then check whether or not the inequali8) is satisfactory.  respectively. From the Lyapunov equatit8) we obtain
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(a) ©
" ' 2 20
Extended Kalman Filte:
+ 50
10
0 5
M noise v« ~ g 0 1
N -10 S
)
Chaotic sys. X -20 .50
O .
T K- x=Ax+Bu+f(x) -30
0 5 10 15 20 0 5 10 15 20
time time
- b)
Chaotic sys. y (
. 30
y=Ay+But/ ()

20

noise vy

vy
N
(=] o
=
T

Extended Kalman Filter y

-20
0 5 10 15 20
time

FIG. 4. Synchronization of two noisy chaotic systems aids by  FIG. 5. Synchronization of the Lorenz systems with the com-
two stochastic observe(&EKF). mand switched on at=10 sec: (a) statex;, (b) statey;, and(c)
synchronization errox;—yj.

0.0016 0.0001 0
p=| 0.0001 0.0017 0 AmaxdP)=0.0015. ‘

0 0 0.0017 3y1 0

O 2
=max0,3y])=L. (24

If the initial errors of the two synchronization systems are
confined byly;|<0.1 andly,| e R, becausg, is a measured
state, it is still possible to achieve this initial error. Therefore,
£=0.03.

Step 3 This step is passed over.

Step 4 Select the coupled gain to H€=1. Then the
eigenvalues oAy are —0.05+-0.998. From the Lyapunov
equation(6), we have

Thus the inequality(9) is satisfactory becauseng,(P)L
=2X0.0015<240=0.72<1. The results of the simulation
are shown in Fig. 5 and the synchronization command wa
switched on at=10 sec. Owing to a high coupled gain feed-
back, it can be seen that the synchronization error converged
instantly.

B. Example 2 10.05 05
The Duffing systenfi13] in the form of Eq.(2) is given by = _6_5 10' ) Amax P)=10.526.
X1\ (0 1 \(x4\ (O 0 . . : .
(. ):( +( b cogt)+ 3) Thus the inequality(9) is satisfactory becauseng,.{(P)L
X2/ 10 —ajixy) |1 X =2x10.526<0.03=0.63<1.
—BKC(x—Y), We omitted the numerical simulation of this case because
(23 a long synchronization time is needed and the results can be
seen in [13,14. Nevertheless, because of the low-
Y1 0 1\(ys 0 dimensional Duffing system, we can easily look closely at
(yz):(o —a yz)+(1 b cos(t)+<_yi>, the convergent factors mentioned above. In this example,

based on Eq4), the error dynamics of the synchronization

where the parameters are chosermad).1 andb=10. Thus
these systems are chaotic. It can be easily verify that the pair y=(A—BKC)y+f(y+y)—f(y)
(A,B) is controllable. In order to compare with the existing

literature[13,14), we first design the synchronization prob- :[(0 1) 0) }- -
lem without the observer and then with the observer. 0 —a 1 KLOy*Tly+y) =Ty
0 - ~
1. The output feedback coupling =( K vyt f(y+y)—1f(y). (25

Step 1 We use one control inpyphysical constraintand
a single measuremer(position in this example, i.e.B  Clearly, the eigenvalues of A, are \j,=(—a
=(0,1)" andC=(1,0), where the paifA,C) is observable. +./a?—4K)/2. The coupled gainK cannot arbitrarily
Accordingly, this is neither a full state measurement nor archange the eigenvalues Af,, but does influence the matrix
observer assistance case and the initial error in(Eg).can- P a little. Notably, in Eq.(25) the synchronization error un-
not be given arbitrarily. der the nonlinear term perturbatié(y+y) — f(y) converges

Step 2 Becausd (y)=(0,— yi)T, the local Lipschitz con- on its own. Clearly, a larger initial error will eventually di-
stantL is evaluated by verge the error equatiof25).
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(a) (© (a)
10 10 10 10
/—observer observer __ observer %
= 5 =5 // o8 / i:: 5
= b & 8
= 2 3 5
0 0 T o € o
w
2 5 10 15 20 0 5 10 15 20 -5 5
. . 0 5 10 15 20 o] 5 10 15 20
time time time time
o) @ )
10 A10 10
= —— ob: o
(T X observer on ? /~—observer on observer
x 25 ~ 5
5 : = 7
5 @ 2
8 g0 S
S 5 o 0
0 -5
! 5 10 15 20 0 5 10 15 20 5 s 10 15 20
time time time
© FIG. 7. Synchronization of the Duffing systems under nois
10
2 measurements. Deterministic observers are appli€a): state x;
s and the estimated stakg, (b) statey, and the estimated stajg,
= . .
5 . and (c) synchronization errox; -y, .
5
c
> .
1 1
)= + b coqt)+ 3
10 (YZ 0 -a Y2 1 -yi)’
0 5 10 15 20
time ’
y'=Cy+v,.

FIG. 6. Synchronization of the Duffing systerfaeterministic
case@ with the observer switched on & 5 sec and synchronization In this noisy measurement case, we simply assume that the

command switched on at 10 sec: (a) statex, and the observer's noise is uncorrelated Gaussian datdite nois¢ with mean
statex,, (b) statey, and the observer’s statg, and(c) synchro-  and covariance,~N(0,R,) andvy~N(0,Ry), where

nization errorx; —ys .
0.2 0 02 0
= . Ry=

2. The observer feedback coupling (deterministic case)
0 O 0 O0)

Now let us reconsider those steps in the above discussion

with a deterministic observer. Hence the design procedures are exactly the same as those in
Step 1 The pairs(A,B) and (A,C) are controllable and he d esign p h 3;1 teedback X
observable, respectively, the etermm_lstlc case except that the feedback gains
’ (Kx,Ky) are time-varying data and have to be calculated at

Step 2 Let the initial error of the Duffing systems be
arbitrary. Roughly, in the state space we have

lyal <5, |y|=20. (26) 10

(@ ©

o

Substituting Eq(26) into Eqg.(24) and taking the worse case
of the initial error, i.e.,y;=10 andy,=40, we haveL W
=75. 0

Step 3 SetK, = Kyz[loo,loho; based on the inequal-
ity (9) the observers are converged. Therefore, we have 5 s : —
)\ma)&P)ZOOOS time

Step 4 Select the coupled gain to B€=(100,50). In-
equality (9) holds. The numerical simulations are shown in

Fig. 6 with the observer switched ontat 5 sec and synchro-
nization command switched on &t 10.

(x &)

o
m
Py
m
Syn. error (x; - y,)
(9,3

(=]

3. The observer feedback coupling (stochastic case)

The synchronization problems in E3) with the mea- .
surement noises are rewritten as 0 5w 2

P[5 20018

—BK(X'—y’), X' =Cx+vy

FIG. 8. Synchronization of the Duffing systems under noisy
- xf measurements. Extended Kalman filters are app{@dtatex; and
the estimated state;, (b) statey, and the estimated stajg, and
(c) synchronization errox,—y; .

X1

X, b coqt)+

(27)
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each time step according to Eq47) and(18). The simula- IV. CONCLUSION

tion results in this case are shown in Figs. 7 and 8. First, in |y symmary, we have presented a systematic procedure to
Fig. 7 we show the results of synchronization with only theanalyze the state feedback control method for achieving syn-
aid of deterministic observers. As shown in Figc)7 there  chronization. In this study the problems of synchronization
exists a steady-state error in synchronization, which dependée., gain selection, the number of measurements, and the
on the intensity of the external noises. Thereafter, in Fig. gnitial error within two chaotic systemdiave been clarified.

an EKF was applied. In Fig.(8) the noise has been effec- By a methodical analysis, our results point out that if the

. . R initial error is arbitrary, then, theoretically, a full state mea-
tively rejected and the error of synchronization is amplysurement is needed; otherwise there is an inequality that

ameliorated. In addition, in the EKF design, the noise is noty, st hold. Furthermore, with the aid of the observers, syn-
required to be uncorrelated or certain; the more the informachronization that is only output couplédot a full state mea-
tion implies, the smaller the estimation errors and the fastesurement or under a noisy measurement still can be effi-
the EKF convergence. ciently accomplished.
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