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Analysis and observer design in synchronization via a state feedback control method
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Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054, Republic of China
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On the basis of a Lure-type system, a systematic procedure of state feedback control was developed to
analyze the synchronization of two chaotic systems. To ensure a stable synchronized result, the conditions of
stability are investigated. Moreover, with the aid of a deterministic observer, the unmeasured states are recon-
structed and the time of synchronization can be arbitrarily designed with a guaranteed stability. Meanwhile, if
the system’s output is corrupted by the measurement noise, then a stochastic observer~extended Kalman filter!
is proposed to reject the noise.@S1063-651X~97!06711-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Synchronization between two identical~or nearly identi-
cal! chaotic systems recently has received a great dea
interest in light of its potential applications@1,2#. In particu-
lar, the use of chaotic synchronization in communicat
fields has been investigated by many workers; see e.g.,@3–
7#. Because of the broadband character of the chaotic sig
it is especially availing in secure signal transmission@8–10#.
There are various strategies that have been applied to c
out the synchronization. Some main approaches of th
strategies had also been verified by experiments such
Pecora and Carroll’s method@1#, the Ott-Grebogi-York
~OGY! @11#–based method@12#, and the state feedback con
trol ~SFC! method @13–15#. In the method of Pecora an
Carroll, a system is divided into a drive subsystem~whose
largest Lyapunov exponent is positive! and a driven sub-
system~whose Lyapunov exponents are all negative!. Thus
the trajectories from two identical driven subsystems can
synchronized if the same driven system is used. Never
less, due to the divided requirements of the system,
method is not always applicable. Subsequently, methods
do not require division were employed. First, a method ba
on the OGY idea was used, which requires continual mo
toring of the system’s states and deals with the Poinc´
map. Thereafter, the SFC method was applied based on
idea of Pyragas@16,17#. In practical applications, due to sel
regulation of state feedback, the method of SFC does
need a real-time computer analysis and is particularly fav
able for experimentation.

The stability of synchronization is also an important su
ject attracting many researchers. In the case of Pecora
Carroll’s method, a systematic analysis procedure was fo
in @18# and then a necessary and sufficient condition ba
on the asymptotic stability was presented@19#. In applica-
tions, an appropriate Lyapunov function is needed for
subsystem and the stability of synchronization needs to
investigated in a case by case study. If a suitable Lyapu
function is not found, this method for synchronization th
fails. In the case of the OGY-based method, by reason
restricted application~applied only to the systems describe
by two-dimensional maps on a Poincare´ surface!, the discus-
sion of the stability of the method is limited. In the case
the SFC method, the stability was discussed by Pyragas@17#.
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It dealt with the conditional Lyapunov exponent calculat
from a linearized result of the variational equation. Due
the requirements of previous computer analyses, the S
method suffers in problems of coupled gain selection~or
perturbation weight!, the number of measurements~or per-
turbations!, and the initial error between two chaotic sy
tems. Until now, most recent papers applying this meth
still handled those problems with a trial and error gain sel
tion, ambiguous initial error, and numerous computer sim
lations @13–15#. In fact, the above items affect each oth
mutually and need an efficient systematic analysis initiall

Due to the state feedback coupling of the SFC meth
theoretically, it is always possible to have a stable synch
nization result through a coupled gain and coupled s
~measurement! adjustment. Briefly, in the error equation o
the SFC method, the eigenvalues of the linear part can
designed~a selective synchronization time!, which is an ap-
parent distinction from other methods. In this paper we p
vide a methodical procedure to analyze the SFC method
condense it with a criterion of synchronization stability. Fu
thermore, under noisy or only output available circum
stances, we built an observer to estimate the unmeas
states and to reject the noise. Thereafter, the stability of s
chronization still can be accomplished.

The outline of the remainder of this paper is as follows.
Sec. II we briefly discuss the method of the SFC based on
concept of Lure’s system. In essence, this point of view is
separate a nonlinear physical system into a linear dynam
system and a nonlinear element. Therefore, the whole sys
can be represented as a feedback connection that is e
analyzed by a linear theory. An observer design is also
troduced in this section to assist the stability of synchroni
tion. In Sec. III two typical examples are used to demonstr
the proposed design procedures. Finally, in Sec. IV we su
marize the results of this paper.

II. STATE FEEDBACK CONTROL METHOD

A. Output feedback coupling

Suppose that there are two identical~or nearly identical!
chaotic systems in the form of

ẋ5F~x,u!, ẏ5F~y,u!, ~1!

where F:Rn3Rp→Rn is a vector field of the system,x,y
5265 © 1997 The American Physical Society
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5266 56YU-MIN LIAW AND PI-CHENG TUNG
PRn are the system states, anduPRp is the control input.
We assumed that the system~1! has a ‘‘Lure-type system’’
@21# form, i.e., a linear time-invariant~constant! system with
a feedback connection of nonlinear element as shown in
1. On the basis of this point of view, we separated~rear-
range! system~1! as into the linear and nonlinear parts

ẋ5Ax1Bu1 f ~x!, x85Cx
~2!

ẏ5Ay1Bu1 f ~y!, y85Cy,

where the matrixAPRn3n is the linear parts of the plan
~time invariant!, BPRn3p is the control matrix,x8,y8PRm

are the measurements with an output matrixCPRm3n, and
f (x) is the nonlinear element. It should be noted that
matrix A is not a linearized result~i.e., Jacobian lineariza
tion! of F nor is the nonlinear elementf (x) a higher-order
term ofF in an expansion around a fixed point. A schema
diagram of Eq.~2! is shown in Fig. 2. The process of repr
senting a nonlinear system in Lure form depends on the
ticular system involved. If the states of the system~1! cannot
be separated, we simply setA to be a zero matrix. Otherwise
if the control term of the system~1! is not separable, then th
system fails to have a Lure form. Basically, it is not hard
find a linear time-invariant part of matrixA, whereas there
may be some difficulty in separating the term of cont
force u. Fortunately, in many physical cases including ch
otic ones~e.g., the Lorenz system and the Duffing system!, it
is not difficult to represent the system in the feedback fo
of Fig. 1. Hence, in Eq.~2! let thex system be driven~slave!
to synchronize they system~master!. Two chaotic systems
are coupled by the difference of the output vector and
matrix of coupled gain as

ẋ5Ax1Bu1 f ~x!2BK ~x82y8!, ~3a!

ẏ5Ay1Bu1 f ~y!, ~3b!

whereKPRp3m is the matrix of the feedback coupled gai
Note that in Eq.~3a! the coupled termBK (y82x8) without
the control vectorB actually acts as a software observ
known in engineering fields~a Thau observer@20#!. Further,

FIG. 1. Nonlinear system represented by a feedback connec
of a linear system and a nonlinear element.
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let us define the synchronization error vector byỹ[x2y;
then the error dynamics obeys

yP5Aỹ1 f ~x!2 f ~y!2BKC ~x2y!

5A0ỹ1 f ~y1 ỹ!2 f ~y!, ~4!

whereA05A2BKC . In Eq. ~4! the synchronization of two
systems has been condensed to a quasilinear system wit
linear partA0 and nonlinear partf (y1 ỹ)2 f (y). Hence the
effects of the initial error between two chaotic systems c
be easily understood by the nonlinear part of this equat
Moreover, the effects of the coupled gainK and number of
measurements can be realized by the Hurwitz~i.e., the eigen-
values are in the open left-half plane! notion of the matrix
A0 . Subsequently, in order to have a convergent result in
~4!, the Lyapunov function is used to guarantee the synch
nization stability. First we assume that the nonlinear funct
f ( ) is confined by a local Lipschitz condition, i.e.,

i f ~x!2 f ~y!i5i f ~y1 ỹ!2 f ~y!i<Li ỹi , ~5!

whereL is a local Lipschitz constant. In an increasing no
linear element, the greater the initial error, the larger
Lipschitz constantL ~as shown in Sec. III!. Actually, this
constant can be interpreted as the maximum gradient in
region of interest. Then, ifA0 is Hurwitz, given a positive-
definite matrixQ, there is a constant, symmetric, positiv
definite matrixP such that the Lyapunov equation is

PA01A0
TP52Q. ~6!

Let the quadratic Lyapunov function beV( ỹ)5 ỹTPỹ; then
the derivative ofV( ỹ) along the trajectories of the error sy
tem satisfies

V̇~ ỹ!52 ỹTQỹ12ỹTPLi ỹi2

<2lmin~Q!i ỹi2
212lmax~P!Li ỹi2

2. ~7!

The synchronized error converges asymptotically to zero

L,lmin~Q!/2lmax~P!, ~8!

wherel are the eigenvalues of matrixQ or P. Without a loss
of precesion we setQ5I and thus the ratio in Eq.~8! has a
maximum value~further details can be found in@21#!. There-
fore, we have the inequality

2lmax~P!L,1. ~9!

Since the feedback coupling termBKC produces a Hurwitz
A0 , the rules in the linear system can be applied directly
Eq. ~4!. If the matrixC is a fully state measurement and th
pair ~A,B! is controllable@22# ~i.e., through the matrixB the
actuator can excite the system states to any points in
phase space!, then the eigenvalues ofA0 can be assigned
arbitrarily, i.e., lmax(P) can be chosen. Consequently, t
synchronization between the chaotic systems can be acc
plished under any initial errors. Here the synchronizat
problems have been interpreted as a pole placement o
linear part in the quasilinear equation~4!. Once the choice of
the eigenvalues ofA0 ~i.e., the choice of the maximum ei
genvalue ofP! holds the inequality~9!, the synchronization

on
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56 5267ANALYSIS AND OBSERVER DESIGN IN . . .
converges asymptotically to zero within the region of loc
Lipschitz availability. To this end, the influence facto
~coupled gain selection, number of measurements, and in
error of two systems! have been systematically connect
together and can be summarized as follows.

In order to cover any initial errors, an appropriate ma
mum eigenvalue ofP is needed~the suitable eigenvalues o
A0!, i.e., the matrixC must be a full state measurement a
the pair~A,B! must be controllable. If this is not the case, w
are aware that the initial error may not be given arbitrar
and the stability of synchronization is studied with a ca
by-case applicability.

B. Observer feedback coupling

1. Deterministic case (without noise)

In the case in which the system’s states are not fully
cessible, we propose a nonlinear observer~deterministic! to
estimate those states. With the same systems and output
Eq. ~2!, the observer is designed for each chaotic system
reconstruct the embedded states as shown in Fig. 3. In p
ticality, the observers are implemented by computer s
ware. If the pair~A,C! is observable@22# ~i.e., through the
matrix C the measurement can read out all states in the
tem!, the observer is asymptotically converged. The ma
ematical formulation is

ẋ5Ax1Bu1 f ~x!2BK ~ x̂2 ŷ!, ~10a!

x̂̇5Ax̂1Bu1 f ~ x̂!2BK ~ x̂2 ŷ!2K x~Cx̂2x8!, ~10b!

ẏ5Ay1Bu1 f ~y!, ~11a!

ŷ̇5Aŷ1Bu1 f ~ ŷ!2K y~Cŷ2y8!, ~11b!

wherex̂,ŷPRn are the observer’s states andK x ,K yPRn3m

are the gain of each observer. If defining the observer’s e
as ex[ x̂2x and ey[ ŷ2y, the error dynamics in Eqs.~10!
and ~11! then obeys

FIG. 2. Synchronization of two chaotic systems interpreted
the ‘‘Lure-type system’’ form.
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ėx5~A2K xC!ex1 f ~x1ex!2 f ~x!,
~12!

ėy5~A2K yC!ey1 f ~y1ey!2 f ~y!.

Thereafter, the error dynamics of synchronization (ỹ[x
2y) is

yP5~A2BK !ỹ1 f ~y1 ỹ!2 f ~y!2BK ~ex2ey!. ~13!

With a time-scale decomposition@21#, let us first switch on
the observer and then the synchronization command. Co
quently, the converged time both in the observer and in s
chronization can be designed under an appropriate gain
lection. Note that the feedback gains in observers (K x ,K y)
are software and in synchronization~K ! hardware.

2. Stochastic case (with noise)

The observer results in the above deterministic case
be easily extended with a similar procedure to a stocha
case. Taking into account the measurement noise~suppose
that there is no input disturbances! in Eqs. ~2! and ~3!, the
problems of synchronization between two systems~without
observer! are reformulated as

ẋ5Ax1Bu1 f ~x!2BK ~x82y8!, x85Cx1vx
~14!

ẏ5Ay1Bu1 f ~y!, y85Cy1vy ,

where v is the vector of the measurement noise. Here
assume that all noise is an uncorrelated Gaussian distribu
with zero mean and fixed covariance as described byvx
;N(0,Rx) and vy;N(0,Ry). Hence let us design an ex
tended Kalman filter~EKF! @23# to substitute the determin
istic observers in Eqs.~10b! and~11b! and to reject the noise
as shown in Fig. 4. Evidently, the design procedures of
synchronization are similar to Eqs.~10a!, ~10b!, ~11a!, and
~11b!, but different in the observer gain (K x ,K y) selection.
Accordingly, the error dynamics of the synchronization is t
same as in Eq.~13!, while the estimated error dynamics o
the EKF are slightly different from Eq.~12! as

ėx5~A2K xC!ex1 f ~x1ex!2 f ~x!2K xvx , ~15!

ėy5~A2K yC!ey1 f ~y1ey!2 f ~y!2K yvy .

Surely, in Eq.~15!, based on the criterion of the EKF,
minimum variance result is obtained. According to lineariz
tion about the current estimated states, the EKF’s gain m
be computed in real time as

Ṗx5~A1Df x!Px1Px~A1Df x!
T2PxC

TRx
21CPx ,

~16a!

K x5PxC
TRx

21, ~16b!

Ṗy5~A1Df y!Py1Py~A1Df y!T2PyC
TRx

21CPy ,
~17a!

n
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5268 56YU-MIN LIAW AND PI-CHENG TUNG
K y5PyC
TRy

21, ~17b!

where

Df x5
] f ~x!

]x U
x5 x̂

, Df y5
] f ~y!

]y U
y5 ŷ

. ~18!

Clearly, Eq.~18! is a first-order approximation. A high-orde
expansion can be easily derived, but with more time c
sumption. Here the matricesPx ,Py are an approximation o
the true covariance matrix andK x ,K y are calculated base
on the rule of minimum variance. An EKF in engineerin
fields is not always stable and we have to allow for a sm
error in the initial estimation. Once the filters converge,
design procedures of synchronization are the same as the
state measurement procedure shown in Eq.~3!. To this end,
the synchronization with the observer can be summarize
follows.

Step 1. In order to cover any initial errors, a changeab
maximum eigenvalue ofP is needed~i.e., the eigenvalues o
A0 can be assigned!, which also means that the pairs~A,B!
and ~A,C! are controllable and observable, respectively~the
requirement of a full measurement is substituted by an
servable constrain!. If this is not the case, we are aware th
the initial error may not be given arbitrarily and the synch
nization is stabilized case by case.

Step 2. From Eq.~5! the local Lipschitz constantL is
evaluated according to the nonlinear function and the ini
error within two systems.

Step 3. If the systems are not full state measureme
and the pair~A,C! is observable, then design the observ
~deterministic or stochastic! for the systems with feedbac
gain K x andK y .

Step 4. Selected the synchronization coupled gainK and
then check whether or not the inequality~9! is satisfactory.

FIG. 3. Synchronization of two chaotic systems aids by t
deterministic observers.
-

ll
e
ull

as

-
t
-

l

s
s

III. EXAMPLES

A. Example 1

The synchronization of two Lorenz systems@15# is stud-
ied in this example. On the basis of Eq.~2!, the systems in
the Lure form are described as

S ẋ1

ẋ2

ẋ3

D 5S 2p
r
0

p
21
0

0
0

2b
D S x1

x2

x3

D 1S 0
2x1x3

x1x2

D ,

~19!

S ẏ1

ẏ2

ẏ3

D 5S 2p
r
0

p
21
0

0
0

2b
D S y1

y2

y3

D 1S 0
2y1y3

y1y2

D .

To synchronize, the systems are coupled in the form of
~3! and are given by

S ẋ1

ẋ2

ẋ3

D 5S 2p
r
0

p
21
0

0
0

2b
D S x1

x2

x3

D 1S 0
2x1x3

x1x2

D
2BKC ~x2y!,

~20!

S ẏ1

ẏ2

ẏ3

D 5S 2p
r
0

p
21
0

0
0

2b
D S y1

y2

y3

D 1S 0
2y1y3

y1y2

D .

The parameters are chosen asp510, r 528, andb58/3;
thereupon both systems are chaotic.

Step 1. To simplify the problem and coupled gain sele
tion, in this first example let all the states be measured
three control inputs be considered, i.e., two identity matri
B5CPR333. Therefore, the coupled gainK will be a
333 matrix and the eigenvalues of (A2BKC ) can be as-
signed arbitrarily. Note that, in the case of the Lorenz s
tem, the three control inputs can easily be fulfilled by a c
cuit ~see, e.g.,@3,24#! and with two control inputs, the pai
~A,B! is controllable.

Step 2. Becausef (y)5(0,2y1y3 ,y1y2)T, the local Lips-
chitz constantL is evaluated by

I ] f ~y!

y I
`

5S 0
2y3

y2

0
0
y1

0
2y1

0
D

`

5max~0,uy3u1uy1u,uy2u1uy1u!5L. ~21!

Let the initial error of the Lorenz systems be arbitrar
Roughly, in the state space we have

uy1u<60, uy2u<60, uy3u<60. ~22!

Substituting Eq.~22! into Eq.~21! and taking the worse cas
of the initial error, i.e.,ỹ15 ỹ25 ỹ35120, we haveL5240.

Step 3. There is no need for an observer.
Step 4. Select the coupled gain to beK

5(300,0,0; 0,300,0; 0,0,300)T, with an identity matrixC,
and the eigenvalues ofA0 2322.8, 2288.2, and2302.7,
respectively. From the Lyapunov equation~6! we obtain
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P5S 0.0016
0.0001

0

0.0001
0.0017

0

0
0

0.0017
D , lmax~P!50.0015.

Thus the inequality~9! is satisfactory because 2lmax(P)L
5230.0015324050.72,1. The results of the simulation
are shown in Fig. 5 and the synchronization command w
switched on att510 sec. Owing to a high coupled gain fee
back, it can be seen that the synchronization error conve
instantly.

B. Example 2

The Duffing system@13# in the form of Eq.~2! is given by

S ẋ1

ẋ2
D5S 0

0
1

2aD S x1

x2
D1S 0

1Db cos~ t !1S 0
2x1

3D
2BKC ~x2y!,

~23!

S ẏ1

ẏ2
D5S 0

0
1

2aD S y1

y2
D1S 0

1Db cos~ t !1S 0
2y1

3D ,

where the parameters are chosen asa50.1 andb510. Thus
these systems are chaotic. It can be easily verify that the
~A,B! is controllable. In order to compare with the existin
literature @13,14#, we first design the synchronization pro
lem without the observer and then with the observer.

1. The output feedback coupling

Step 1. We use one control input~physical constraint! and
a single measurement~position! in this example, i.e.,B
5(0,1)T andC5(1,0), where the pair~A,C! is observable.
Accordingly, this is neither a full state measurement nor
observer assistance case and the initial error in Eq.~13! can-
not be given arbitrarily.

Step 2. Becausef (y)5(0,2y1
3)T, the local Lipschitz con-

stantL is evaluated by

FIG. 4. Synchronization of two noisy chaotic systems aids
two stochastic observers~EKF!.
s

ed

air

n

I ] f ~y!

y I
`

5S 0
23y1

2
0
0D

`

5max~0,u3y1
2u!5L. ~24!

If the initial errors of the two synchronization systems a
confined byuy1u<0.1 anduy2uPR, becausey1 is a measured
state, it is still possible to achieve this initial error. Therefo
L50.03.

Step 3. This step is passed over.
Step 4. Select the coupled gain to beK51. Then the

eigenvalues ofA0 are 20.0560.998i . From the Lyapunov
equation~6!, we have

P5S 10.05
20.5

20.5
10 D , lmax~P!510.526.

Thus the inequality~9! is satisfactory because 2lmax(P)L
52310.52630.0350.63,1.

We omitted the numerical simulation of this case beca
a long synchronization time is needed and the results ca
seen in @13,14#. Nevertheless, because of the low
dimensional Duffing system, we can easily look closely
the convergent factors mentioned above. In this exam
based on Eq.~4!, the error dynamics of the synchronizatio
is

yP5~A2BKC !ỹ1 f ~y1 ỹ!2 f ~y!

5F S 0
0

1
2aD2S 0

1DK~1,0!G ỹ1 f ~y1 ỹ!2 f ~y!

5S 0
2K

1
2aD ỹ1 f ~y1 ỹ!2 f ~y!. ~25!

Clearly, the eigenvalues of A0 are l1,25(2a
6Aa224K)/2. The coupled gainK cannot arbitrarily
change the eigenvalues ofA0 , but does influence the matri
P a little. Notably, in Eq.~25! the synchronization error un
der the nonlinear term perturbationf (y1 ỹ)2 f (y) converges
on its own. Clearly, a larger initial error will eventually d
verge the error equation~25!.

y FIG. 5. Synchronization of the Lorenz systems with the co
mand switched on att510 sec: ~a! statex1 , ~b! statey1 , and~c!
synchronization errorx12y1 .
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5270 56YU-MIN LIAW AND PI-CHENG TUNG
2. The observer feedback coupling (deterministic case)

Now let us reconsider those steps in the above discus
with a deterministic observer.

Step 1. The pairs~A,B! and ~A,C! are controllable and
observable, respectively.

Step 2. Let the initial error of the Duffing systems b
arbitrary. Roughly, in the state space we have

uy1u<5, uy2u<20. ~26!

Substituting Eq.~26! into Eq.~24! and taking the worse cas
of the initial error, i.e., ỹ1510 and ỹ2540, we haveL
575.

Step 3. SetK x5K y5@100,1000#T; based on the inequal
ity ~9! the observers are converged. Therefore, we h
lmax(P)50.005.

Step 4. Select the coupled gain to beK5(100,50). In-
equality ~9! holds. The numerical simulations are shown
Fig. 6 with the observer switched on att55 sec and synchro
nization command switched on att510.

3. The observer feedback coupling (stochastic case)

The synchronization problems in Eq.~23! with the mea-
surement noises are rewritten as

S ẋ1

ẋ2
D5S 0

0
1

2aD S x1

x2
D1S 0

1Db cos~ t !1S 0
2x1

3D
2BK ~x82y8!, x85Cx1vx ~27!

FIG. 6. Synchronization of the Duffing systems~deterministic
case! with the observer switched on att55 sec and synchronizatio
command switched on att510 sec: ~a! statex1 and the observer’s
statex̂1 , ~b! statey1 and the observer’s stateŷ1 , and~c! synchro-
nization errorx12y1 .
on

e

S ẏ1

ẏ2
D5S 0

0
1

2aD S y1

y2
D1S 0

1Db cos~ t !1S 0
2y1

3D ,

y85Cy1vy .

In this noisy measurement case, we simply assume tha
noise is uncorrelated Gaussian data~white noise! with mean
and covariancevx;N(0,Rx) andvy;N(0,Ry), where

Rx5S 0.22

0
0
0D , Ry5S 0.22

0
0
0D .

Hence the design procedures are exactly the same as tho
the deterministic case except that the feedback ga
(K x ,K y) are time-varying data and have to be calculated

FIG. 7. Synchronization of the Duffing systems under no
measurements. Deterministic observers are applied:~a! statex1

and the estimated statex̂1 , ~b! statey1 and the estimated stateŷ1 ,
and ~c! synchronization errorx12y1 .

FIG. 8. Synchronization of the Duffing systems under no
measurements. Extended Kalman filters are applied:~a! statex1 and
the estimated statex̂1 , ~b! statey1 and the estimated stateŷ1 , and
~c! synchronization errorx12y1 .
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each time step according to Eqs.~17! and ~18!. The simula-
tion results in this case are shown in Figs. 7 and 8. First
Fig. 7 we show the results of synchronization with only t
aid of deterministic observers. As shown in Fig. 7~c!, there
exists a steady-state error in synchronization, which depe
on the intensity of the external noises. Thereafter, in Fig
an EKF was applied. In Fig. 8~c! the noise has been effec
tively rejected and the error of synchronization is amp
ameliorated. In addition, in the EKF design, the noise is
required to be uncorrelated or certain; the more the inform
tion implies, the smaller the estimation errors and the fa
the EKF convergence.
z,

its

ys

tt
in

ds
8

t
-

er

IV. CONCLUSION

In summary, we have presented a systematic procedu
analyze the state feedback control method for achieving s
chronization. In this study the problems of synchronizati
~i.e., gain selection, the number of measurements, and
initial error within two chaotic systems! have been clarified.
By a methodical analysis, our results point out that if t
initial error is arbitrary, then, theoretically, a full state me
surement is needed; otherwise there is an inequality
must hold. Furthermore, with the aid of the observers, s
chronization that is only output coupled~not a full state mea-
surement! or under a noisy measurement still can be e
ciently accomplished.
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